
CVPR
#12248

CVPR
#12248

CVPR 2025 Submission #12248. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

: Aid Visually Impaired People Walking by Vision Language Model

Anonymous CVPR submission

Paper ID 12248

Abstract

Approximately 200 million individuals around the world001
suffer from varying degrees of visual impairment, making002
it crucial to leverage AI technology to offer walking assis-003
tance for these people. With the recent progress of vision-004
language models (VLMs), employing VLMs to improve this005
field has emerged as a popular research topic. However,006
most existing methods are studied on self-built question-007
answering datasets, lacking a unified training and testing008
benchmark for walk guidance. Moreover, in blind walking009
task, it is necessary to perform real-time streaming video010
parsing and generate concise yet informative reminders,011
which poses a great challenge for VLMs that suffer from012
redundant responses and low inference efficiency. In this013
paper, we firstly release a diverse, extensive, and unbiased014
walking awareness dataset, containing 12k video-manual015
annotation pairs from Europe and Asia to provide a fair016
training and testing benchmark for blind walking task. Fur-017
thermore, a WalkVLM model is proposed, which employs018
chain of thought for hierarchical planning to generate con-019
cise but informative reminders and utilizes temporal-aware020
adaptive prediction to reduce the temporal redundancy of021
reminders. Finally, we have established a solid bench-022
mark for blind walking task and verified the advantages of023
WalkVLM in stream video processing for this task compared024
to other VLMs. Our dataset and code will be released at025
anonymous link https://walkvlm2024.github.io.026

1. Introduction027

Approximately 200 million people worldwide suffer from028
varying degrees of visual impairment, with 36 million com-029
pletely blind [1, 2]. These visually impaired people (VIPs)030
are facing severe challenges in daily activities such as walk-031
ing, which may be alleviated by contemporary artificial in-032
telligence technologies [3, 4].033

The current walking assistance works primarily con-034
centrate on electronic assistive devices, sensory substi-035
tution devices, and computer vision-based assistive sys-036
tems [5–7]. Among them, vision-based assistive systems037
can be roughly divided into detection-based methods and038

Figure 1. WalkVLM provides opportune, concise, informative
walking reminders and answers for visually impaired people based
on hierarchical planning and temporal-aware adaptive prediction.

semantic-based methods [8–10]. Detection-based methods 039
have been studied for a long time, aiming to detect potential 040
obstacles in the field of view, so as to let VIPs avoid them 041
[11, 12]. Semantic-based methods utilize vision-language 042
models (VLMs) to analyze images, thereby generating re- 043
sponses to VIPs’ questions [13, 14]. In recent days, with 044
the development of VLMs [15, 16], semantic-based meth- 045
ods have gained significant attention. Some studies have 046
tested VLMs in a zero-shot manner to analyze the effective- 047
ness of these models in blind walking [11, 14]. Moreover, 048
some studies have fine-tuned VLMs using traditional visual 049
question-answer (QA) datasets in this field or a small quan- 050
tity of self-built datasets, so that the model can better answer 051
user questions [3, 17]. These studies have empowered blind 052
walking tasks with VLMs and already achieved attractive 053
application results. 054

Although some VLM-based models for blind walking 055
have been developed, these models still face challenges be- 056
fore they can be applied in practice. Firstly, most cur- 057
rent research relies on a small number of self-collected 058
image-text pairs and lacks a consistent and extensive bench- 059
mark [17, 18]. Moreover, the images and text in tradi- 060
tional datasets are predominantly in a question-and-answer 061
paradigm, which makes it challenging for VLMs to proac- 062
tively generate guided responses rather than specific an- 063
swers to questions [13, 19]. Secondly, in blind walking task, 064
it is necessary to perform real-time streaming video pars- 065
ing and generate concise yet informative reminders, which 066
poses a great challenge for VLMs that suffer from redun- 067
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dant responses and low inference efficiency[20, 21].068

In this paper, we propose a WalkVLM for the blind walk-069
ing task and establish a new benchmark to promote the de-070
velopment of this field. Specifically, we first introduce a di-071
verse, extensive, and unbiased Walking Awareness Dataset072
(WAD), which contains 12k video-manual annotation pairs073
from Europe and Asia to provide a fair training and testing074
baseline. After that, as shown in Figure 1, we introduce075
the WalkVLM model to interpret video streaming, which076
employs a chain of thought to hierarchically direct VLM in077
generating concise yet informative reminders, and achieves078
opportune reminders by the proposed temporal-aware adap-079
tive prediction. Comprehensive experiments show that,080
compared to other VLM models, WalkVLM can generate081
more concise reminders and has better temporal adaptabil-082
ity when handling video streaming in blind walking task.083
The main contributions of our work are as follows:084

• We construct a diverse, extensive, and unbiased walking085
awareness dataset, providing extensive data support for086
blind walking task.087

• A WalkVLM model for streaming video parsing has been088
proposed to adaptively provide concise yet informative089
walking reminder for visually impaired people.090

• To the best of our knowledge, this is the first work to uti-091
lize VLM to provide opportune walking guidance for vi-092
sually impaired individuals, laying a solid foundation for093
the practical application of VLM in this field.094

2. Related Work095

Vision Datasets for Blind Walking. Existing datasets096
for blind walking can be roughly divided into two types:097
detection-based [8, 22–24] and semantic-based [9, 13].098
Detection-based datasets have been extensively studied in099
the blind walking, where researchers utilize these datasets100
to train the obstacle detection model, thereby reducing the101
accident rate of VIPs in this task. For example, Zhang et al.102
[22] recently developed a TP-Dataset for detecting visual103
tactile paving surfaces and offered guidance for the visually104
impaired through provide walking routes. Islam et al. [23]105
introduced a dataset for improving real-time object recog-106
nition systems to aid VIPs in navigation tasks, which con-107
tains 90 object annotations from 31 video clips. Compared108
with detection-based datasets, semantic-based datasets are109
relatively rare, which contain question-answering proper-110
ties and provide an enhanced human-computer interaction111
experience. Gurari et al. [9] constructed a VQA dataset112
for VIPs, which contains 31k visual questions, each with113
10 crowdsourced answers. In addition, some researchers114
have constructed several self-built question-answer datasets115
with specific attributes during their studies [3, 13], however,116
these self-built datasets are not open-sourced and are rela-117
tively small in scale, making them unsuitable for large-scale118
and unified benchmarking.119

Vision-based Methods for Blind Walking. Similar to 120
the division of datasets, the vision-based methods that 121
help VIPs walking can also be divided into detection- 122
based methods [11, 12] and semantic-based methods [13]. 123
Detection-based methods typically use detectors to obtain 124
obstacles during walking, thereby providing users with spe- 125
cific object locations. Liu et al. [12] proposed an open 126
scene understanding system, which improves detection per- 127
formance by using SAM [25] to generate pixel-level dense 128
segmentation masks. Tian et al. [26] proposed a system for 129
understanding dynamic crosswalk scenes, including cross- 130
walks, vehicles, and pedestrians, thereby providing VIPs 131
with indications of when and where to cross the road. The 132
semantic-based approach provides VIPs with the scene un- 133
derstanding in the form of question-answer. Merchant et al. 134
[17] verified that vision-language models can generate cor- 135
rect and useful instructions for VIPs, and studied methods 136
to provide users with context-related guidance. Yang et al. 137
[3] explored how to utilize VLMs to provide reliable visual 138
question answers for VIPs, and they fine-tuned the VLMs 139
by LoRA on a small amount of self-built dataset to generate 140
detailed and practical suggestions. Moreover, a few appli- 141
cations such as Be My AI 1 have also adopted semantic- 142
based methods to enable VIPs to take photos for answering 143
questions. However, these applications also only support 144
the question-and-answer paradigm and struggle to provide 145
concise and opportune reminders during walking. 146
Vision-language Models. With the popularity of large 147
language models (LMM), vision-language models have 148
also begun to receive significant attention [18, 27, 28]. 149
Liu et al. [29] proposed the LLaVa, which employ the 150
ViT visual encoder to encode images, follow by mapping 151
them through an MLP to the LLM, yields favorable out- 152
comes in benchmark tests when answering pertinent ques- 153
tions. Subsequently, a plethora of studies emerged based 154
on LLaVa, which greatly impacted various fields [30–33]. 155
Furthermore, multimodal models like Qwen, Gemini, and 156
MiniCPM-V [34–36] have progressively adopted support 157
for multi-frame image inputs and have undergone optimiza- 158
tions for scenarios such as edge devices, significantly en- 159
hancing the usability of VLMs in a wide range of applica- 160
tions. Despite the existing studies validating the viability of 161
multimodal large-scale models [37], there remains a dearth 162
of related applications within specific vertical sectors. For 163
instance, only a limited number of studies [3, 13, 17] have 164
focused on the applicability of VLMs in the blind walking 165
task, with a notable absence of unified and systematic mod- 166
eling approaches. 167

3. Walking Awareness Dataset 168

In this section, we have constructed a walking awareness 169
dataset to provide open data support for blind walking task. 170

1https://www.bemyeyes.com
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Figure 2. The data annotation pipeline for constructing the walking awareness dataset. Appendix A.5 provides more random sampling
examples to observe the diversity and complexity of WAD dataset.

3.1. Data Collection171

The WAD dataset has a wide range of geographical sources,172
which originate from 10 different locations in Europe and173
Asia. 20% of the original data in the WAD dataset comes174
from the annotators’ recordings, and the rest comes from175
YouTube2. During the recording, six recorders positioned176
the camera at a height corresponding to chest level, employ-177
ing focal lengths of 13mm, 20mm, and 26mm, as well as178
resolutions ranging from 1080p to 4k at 60fps, to enhance179
the variability of the data. Lastly, we have amassed approx-180
imately 13 hours of walking video, and see Appendix A for181
the duration of data gathered from various regions.182

3.2. Annotation Strategy183

Figure 2 shows the overall annotation pipeline of walking184
awareness dataset. Next, we will elaborate from two as-185
pects: scene annotation and response annotation.186

Scene annotation. Scene annotation aims to label the in-187
herent attributes of the current scene. We requested nine188
annotators to label the video scene in terms of weather con-189
ditions, location type, traffic flow rating, danger level, and190
scene description. When outdoors, weather conditions are191
divided into six categories such as sunny and rainy, while192
the status is empty when indoors. The location type is di-193
vided into eight categories, such as corridors and pedestrian194
walkway. The traffic flow rating is divided into three levels,195
which are defined based on the person number in the video196
stream. The danger level is defined as the walking hazard197
in the current scene, which is qualitatively divided by the198
traffic flow rating and road smoothness. The scene descrip-199
tion is an overview of the current environment, including an200
expansion on factors such as pedestrian flow, vehicle traffic,201
road conditions, and the surrounding environment. Subse-202
quently, we employed the open-world detection model [39]203
for the preliminary detection of targets, and carried out a204
corresponding human review to uphold the result accuracy.205

2https://www.youtube.com/@poptravelorg

Figure 3. Blind test experiment for analyzing the most critical in-
formation needed by users in blind walking. We required two in-
dividuals to collaborate as a team, where the participant at the rear
provided directions to enable the individual at the front to arrive at
a specific location safely in the absence of any visual information.

Response annotation. Response denotes the concise re- 206
minders that the model is required to generate, as well as the 207
answer that reply to user’s question in blind walking task. 208
In order to analyze the most critical information needed by 209
users in blind walking, we conducted a blind test experi- 210
ment as shown in Figure 3. In the experiment, we requested 211
two people to collaborate in pairs, with the person A be- 212
hind giving directions, so that the person B in front with 213
eye mask could reach a certain destination without any col- 214
lisions. In such a scenario, the instructions received by per- 215
son B during walking come entirely from person A, and 216
the route priors possessed by real blind people are avoided, 217
which can help us analyze what types of information are 218
necessary for the blind walking task. In a large number of 219
such experiments, we have verified that such guidance can 220
guide visually impaired people to walk safely, indicating 221
that the information provided by person A is sufficiently ef- 222
fective for person B. We recorded the video and audio that 223
occurred during this process, analyzed the information in- 224
teraction between the subjects, and thus provided the fol- 225
lowing valid information types that need to be marked for 226
subsequent reminder and QA annotations: 227

• Reminder type. Based on the blind test experiment, as 228
shown in Figure 4, we divided the reminders during walk- 229
ing into six types. (a) Obstacle reminder: Trigger a re- 230
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Dataset Type #Sample Modality Bounding Box Weather Danger level Scene Summary QA Reminder Open
Obstacle Dataset (2023)[24] T 8k Image ✓ ✓
WOTR (2023)[8] T 13k Image ✓ ✓
ISLAM et al.(2024)[38] T 31 Image & Video ✓ ✓
Wang et al.(2024)[11] T 50 Video ✓ ✓
VizWiz (2018)[9] S 31k Image ✓ ✓
Zain et al.(2024)[17] S 48 Image ✓
WAD (Ours) T S 12k / 120k Video / Image ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1. Static information comparison of different datasets in blind walking task. For dataset types, T and S denote the target-based and
semantic-based dataset, respectively. WAD dataset holds a significant advantage in terms of sample numbers, categories, and modalities.

Figure 4. Visualization of six scenarios that require reminders,
which were summarized through multiple blind experiments.

minder when there is a non-moving obstacle on the walk-231
ing route. (b) Intersection reminder: Trigger a reminder232
when the current road has intersections, turns, etc. (c)233
Road clear/narrow reminder: Provide reminders about234
the width and pass ability of the road. (d) Oncoming235
vehicle/person reminder: When there are moving obsta-236
cles on the walking route, trigger a reminder for potential237
dangers. (e) Road departure warning: Issue a warning238
when there is an angular offset between the walking route239
and the current road. (f) Identifier reminder: Provide re-240
minders for prominent landmarks in the scene, such as241
road signs and traffic lights.242

• QA type. For QA type, we proceed from three aspects:243
scene perception, road inquiry, and detailed consultation.244
(a) Scene perception: Macro-level insights such as the un-245
derstanding of the scene. (b) Road inquiry: Route plan-246
ning to reach a certain location within visible range. (c)247
Detailed consultation: Knowledge QA on local details,248
such as road sign content, shop names, etc.249

When marking reminder and QA, we require annotators250
to indicate the specific location of obstacles in the video. In251
the annotations, the distances are represented by steps on a252
scale of 5, the directions are indicated by clock positions,253
so as to reduce the offset caused by the camera perspective.254
We require nine annotators to annotate the above content,255
and the relevant annotation interface is shown in Appendix256
A.3. After the annotation is completed, in order to further257
standardize the annotation content to remove potential bias,258
we used GPT [40] to rephrase the annotated content and259

Figure 5. Visualization of the walking awareness dataset. Each
sample contains a video clip and multiple labels, with the label
hierarchy divided into perception, comprehension, and decision.

conducted manual verification. 260

3.3. Dataset Analysis 261

Figure 5 shows a sample of the WAD dataset, and we divide 262
the annotations into three parts following lower to higher 263
levels: perception, comprehension, and decision. The per- 264
ception label reflects the basic attributes of the video, such 265
as obstacle location, weather conditions, etc., while the 266
comprehension label reflects the model’s understanding of 267
the entire scene. The decision label contains reminder and 268
QA, reflecting the model’s decision on the user’s walking 269
based on its understanding of the current scenario. 270

Table 1 illustrates the comparison between the WAD 271
dataset and other prevalent datasets utilized in blind walk- 272
ing tasks, with T representing the detection-based dataset 273
and S indicating the semantic-based dataset. Compared to 274
other different types of datasets, WAD has a larger data size 275
while containing more static attributes of the environment, 276
scene summaries, QA, and reminder, thus providing more 277
supervision to train the model. It is worth emphasizing that 278
the samples we furnish are exclusively video clips, which 279
possess a greater volume of information in comparison to 280
the images supplied by other datasets. Moreover, for each 281
video clip, we have extracted 10 keyframes to streamline 282
researchers’ use. The walking awareness dataset contains 283
3.47 million instances, with categories and the respective 284
proportions shown in Figure 6(a). The category-related dis- 285
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Figure 6. Visualization of the proportion of targets and categories
in our walking awareness dataset.

tribution in the WAD dataset is shown in Figure 6(b). We286
have selected 1.5k samples as a test set based on different287
static tag types, different reminder types, and different QA288
types to ensure the diversity and completeness in evaluation.289

3.4. Possible Sources of Bias290

Although the WAD dataset is collected from a wide range of291
geographical sources, we are aware of a few biases in our292
dataset. The regions are still limited, which is still a long293
way from complete coverage of the globe. The position294
of the camera and the divergence of focal length are also295
concerns for us, which need to obtain more general data to296
compensate for this. In addition, the linguistic preferences297
of the annotators can introduce specific biases into the gen-298
erated reminder, which implies that during the walking pro-299
cess, the model might provide information that are more300
appropriate for the area where the annotation was made.301

4. WalkVLM302

This section proposes WalkVLM, attempting to empower303
the blind walking task using a vision-language model based304
on the WAD dataset. The overall architecture of WalkVLM305
is shown in Figure 7. We will start with problem formula-306
tion and proceed with hierarchical planning and temporal-307
aware adaptive prediction to generate concise and oppor-308
tune walking reminders.309

4.1. Problem Formulation310

We aim to steer a VLM to process video streams, en-311
abling it to provide walking reminders that include tem-312
poral attributes, and to enable the model to answer spe-313
cific questions in human-machine interactions. Specif-314
ically, at time t0, given the newly appeared frames315
[It−N

..., It−1 , It0 ], categlory and obstacle position in the316
image [Ot−N

..., Ot−1
, Ot0 ], VLM is hoped to generate a317

concise and informative reminder TR
t0 based on visual in-318

formation. During walking, VIPs can also raise a question319
Qt0 to communicate with the VLM at any time, so as to in-320
quire about information such as the current scene and route.321
Additionally, since generating reminders at every frame322
may lead to a poor walking guidance experience and im-323
pose significant real-time processing pressure on hardware,324

WalkVLM needs to be able to predict the current VLM trig- 325
ger state st0 based on historical states [st−N

..., st−1
, st0 ] 326

and the previous N frames, so as to choose specific mo- 327
ments to output reminders. 328

4.2. CoT-Based Hierarchical Planning 329

We attempt to make VLM conduct step-by-step derivation 330
by a Chain of Thought (CoT) [41], enabling it to summa- 331
rize from comprehensive information such as the static at- 332
tributes and the summary of the scene, thereby refining out 333
concise and informative reminders. The model architecture 334
integrates a vision transformer encoder and a large language 335
model (LLM). The vision encoder generates image tokens, 336
while an attention-based extractor aligns these tokens with 337
the LLM, enabling comprehensive understanding and infor- 338
mation processing. WalkVLM combines multi-frame infor- 339
mation to make reminders, ensuring that the model has a 340
comprehensive perception of the environment. 341

We divide the process of reminder generation into three 342
levels: perception, comprehension, and decision. At the 343
perception level, the model extracts static visual attributes 344
from the current frame, such as location type, weather 345
conditions, and traffic flow rating. To enhance the VLM 346
model’s focus on significant elements and improve visual 347
perception accuracy, we incorporate a priori-object location 348
module (POLM). The POLM initially uses a generic object 349
detector [39] to identify and locate objects in the scene, then 350
filters them based on size and confidence scores to high- 351
light crucial items that reflect road conditions and poten- 352
tial danger. The filtered information and basic environmen- 353
tal attributes provide the necessary input for the model to 354
perceive the external world. At the comprehension level, 355
the model integrates all outputs from the perception layer, 356
merging local detection results and fragmented scene infor- 357
mation into a comprehensive global summary. Relying on 358
the capabilities of the VLM and the detailed attributes from 359
the perception stage, this stage ensures that the model has a 360
clear understanding of the current environment. At the de- 361
cision level, we focus on training the WalkVLM model to 362
achieve visual QA and reminder. At this stage, the model 363
already possesses an understanding of the static attributes 364
and overall situation of the environment. Therefore, with 365
appropriate guidance, the model is expected to briefly ana- 366
lyze potential hazards in the scene. 367

During training, we adopted a CoT approach to gradu- 368
ally feed information from three levels into the VLM, and 369
during testing, we let the model predict the aforementioned 370
attributes and generate the corresponding responses. 371

4.3. Temporal-Aware Adaptive Prediction 372

Although VLMs are capable of scene parsing across multi- 373
ple frames and generating the required output, directly ap- 374
plying them to video streaming will lead to unavoidable is- 375
sues. For instance, when utilizing VLM to generate walking 376
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CoT-Based Hierarchical Planning

ConvNeXT
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Frame t-2 Frame t-1

…
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MLP

Visual Tokens

Danger level: [Low, Low, High]
output

<Perception> : describe the basic visual information.

When to Remind ?

Weather Condition: Overcast

 

Area Type: Pedestrian Path

Traffic Flow Rating: Low Object: “labels and position”

<x1, x2, y1, y2> <left, right, top, bottom, center, top left, …>

<Understand>: provide a detailed overview of the surroundings.

Scene Summary: There is a blue road sign within five steps on the left side of the road. 

There are continuous vehicles parked on the left side of the road starting from ten o’clock 

in the left front. There is a man in a blue coat and a woman in a striped long dress in front 

of the road … 

<Decision>: provide guidance based on the above analysis.

Reminder (or QA) : At 2 o'clock direction, watch out for a row of pillars and a lady about 

to pass by. Keep moving forward along the current route.

Q: <frame 0> Are there any 

road signs on the left side of the 

road?

LoRAVision-Language Model

Need Reminder！

Frame
t-2

Frame
t-1

Frame
t

…

Temporal-Aware Adaptive Prediction

Time-sequential Video Stream

CoT-Based Hierarchical Planning

Temporal-Aware 

Adaptive Prediction
Q: <frame 2> Describe 

the surroundings.

History Status: Low Low ?…

Figure 7. An overview of the proposed WalkVLM framework. WalkVLM employs CoT-based hierarchical planning to summarize the
static attributes and understanding of scenes, thereby facilitating the subsequent reminder and QA tasks. Furthermore, temporal-aware
adaptive prediction has been proposed to calculate the trigger state of VLM, thereby reducing the temporal redundancy of outputs.

reminders frame by frame or at regular intervals, it will pro-377
duce a substantial amount of temporal redundancy for the378
user, resulting in a suboptimal user experience. Secondly,379
continuous VLM inference also brings computational pres-380
sure to hardware devices. Identifying and implementing so-381
lutions to this challenge is a key component in the effective382
utilization of VLM for video streaming processing.383

To address the aforementioned issues, we come up with384
a temporal-aware adaptive prediction (TAP) module that in-385
corporates historical information to pre-calculate whether386
to trigger the VLM currently, thereby reducing the infer-387
ence pressure on hardware. Specifically, as shown in the388
right of Figure 7, we utilize a lightweight model to analyze389
historical N frames and determine whether to trigger the390
VLM at the current moment based on the historical output391
states. Given the frames [It−N

, ..., It−1
, It0 ], we utilize a392

3D convolutional model to extract the features fv from the393
sequence. Simultaneously, the predicted trigger states from394
the previous N moments are independently embedded, con-395
catenated, and then passed through multiple layers of per-396
ceptrons to generate the state feature fs. Furthermore, fv397
and fs are integrated by a multi-layer MLP to generate the398
current trigger probability Pt. Three levels of triggers are399
defined, which correspond to the degrees of danger in the400
WAD dataset.401

The TAP model is used to trigger the reminder of VLM,402
and subsequent experiments have verified that this module403
can effectively reduce the temporal redundancy when gen-404
erating walking guidance.405

5. Experiments 406

5.1. Settings 407

Models & Details. WalkVLM is implemented with the 408
MiniCPM-V2.6 model [36], which is an 8B multimodal 409
model built upon Qwen2-7B [46]. We add LoRA to all the 410
linear layers of MiniCPM-V2.6 with a rank of 64, while 411
maintaining the video stream sampling rate of 2 FPS. The 412
number of historical frames N is set to 3, and the visual 413
extraction backbone in the TAP module is ConvNext3D 414
[47]. We compared WalkVLM with multiple popular mul- 415
timodal models, including GPT-4o [44], Qwen2-VL(7B) 416
[45], MiniCPM-V2.6(8B) [36], DeepSeek(1.3B&7B) [42], 417
Yi-VL(6B) [43]. All the prompts of the large models used 418
in this paper can be found in Appendix B. 419
Metrics. We use the following metrics to evaluate the mod- 420
els: (a) ROUGE. This metric measures the similarity be- 421
tween the generated text and the reference text by com- 422
paring overlapping words or phrases, including ROUGE-1, 423
ROUGE-2, and ROUGE-L [48]. (b) TF-IDF Similarity 424
(TF-IDF). Combine term frequency and inverse document 425
frequency to evaluate the weight of words, represent the text 426
as a TF-IDF vector, and then measure the semantic similar- 427
ity between texts [49]. (c) GPT Score. GPT4 is used to 428
evaluate the superiority ratio between the generation results 429
of different multimodal models and the ground truth (GT) 430
[50, 51]. (d) Temporal Redundancy F1-Score (TRF). 431
Given the historical model state and historical frames, let 432
the model predict the danger level of the current moment, 433
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Model Reminder Task QA Task
TF-IDF ROUGE-1 ROUGE-2 ROUGE-L GPT Score TF-IDF ROUGE-1 ROUGE-2 ROUGE-L GPT Score

DeepSeek (1.3B) [42] 0.073 0.098 0.015 0.090 0.060 0.182 0.103 0.020 0.095 0.042
DeepSeek (7B) [42] 0.132 0.073 0.009 0.068 0.006 0.189 0.088 0.021 0.081 0.125
Yi-VL (6B) [43] 0.112 0.093 0.009 0.085 0.054 0.113 0.091 0.012 0.082 0.021
MiniCPM-V2.6 (8B) [36] 0.111 0.071 0.007 0.064 0.010 0.192 0.139 0.025 0.120 0.104
GPT-4o [44] 0.116 0.078 0.008 0.072 0.405 0.242 0.163 0.034 0.145 0.125
Qwen2-VL (7B) [45] 0.106 0.107 0.010 0.097 0.018 0.232 0.182 0.037 0.162 0.063
WalkVLM 0.166 0.191 0.062 0.173 0.447 0.189 0.202 0.051 0.174 0.521

Table 2. Quantitative comparison of different methods on reminder and QA tasks. WalkVLM leads in almost all the TF-IDF, ROUGE, and
GPT Score metrics. The higher the metric, the better the result. Bold and underline indicate the best and the second-best, respectively.

and calculate the F1-Score between the prediction and the434
GT. TF-IDF and ROUGE evaluate similarity from seman-435
tic similarity and word granularity, respectively, while the436
GPT Score determines the optimal result by comparing re-437
sults with GT. TRF measures the temporal redundancy of438
the model’s output; the higher it is, the less temporal redun-439
dancy is generated.440

5.2. Quantitative Results441

Table 2 presents the quantitative metrics of different mod-442
els on the reminder and QA task. On the ROUGE metric,443
WalkVLM has achieved the best results in both tasks, veri-444
fying that the model’s output is closest to the GT at the word445
granularity. On the TF-IDF metric for measuring semantic446
similarity, WalkVLM performs the best in reminder tasks,447
indicating that the model can generate more concise and ac-448
curate results like GT. While in QA tasks, WalkVLM’s per-449
formance on TF-IDF scores does not stand out significantly.450
This could be attributed to the fact that during training, the451
model is encouraged to generate concise answers, which452
may inadvertently diminish its capacity to offer elaborate453
explanations of the questions. The GPT score represents454
the overall evaluation of the LLM on the generated results455
and the GT. WalkVLM outperforms other models such as456
GPT-4o in terms of GPT scores for reminder and QA tasks,457
validating that the model’s output has the most consistent458
distribution with the GT.459

Model Yi-VL MiniCPM-V2.6 GPT-4o Qwen2-VL WalkVLM
TRF 0.341 0.396 0.430 0.449 0.505

Table 3. Temporal redundancy assessment of the reminder task,
our method achieved the highest TRF score.

We use TRF to evaluate the temporal redundancy of the460
output from various VLMs. Specifically, we utilize multi-461
ple frames of images along with historical dangerous states462
as inputs, letting the model to generate a dangerous level463
discrimination identifier, thereby determining whether a re-464
minder should be triggered currently. As shown in Table465
3, compared to other models, WalkVLM has achieved the466
highest TRF indicator, which indicates that this model can467
better reduce the redundancy of reminders in temporal.468

Figure 8. Visualization of triggering moments of GPT-4o and
WalkVLM. WalkVLM triggers with less redundancy, providing
information to users in a more timely manner.

Model Reminder Task QA Task
Concise. Semantic. Concise. Semantic.

DeepSeek(1.3B) 0.026 0.080 0.091 0.114
DeepSeek(7B) 0.002 0.197 0.061 0.114
Yi-VL 0.085 0.023 0.121 0.022
MiniCPM-V2.6 0.026 0.122 0.061 0.205
GPT-4o 0.056 0.195 0.030 0.205
Qwen2-VL 0.121 0.168 0.061 0.170
WalkVLM 0.683 0.216 0.576 0.170

Table 4. User study results on conciseness and semantic similarity
across different tasks. Higher score indicates better performance.

5.3. Qualitative Results 469

Figure 9 presents the visual comparison in reminder task 470
between different VLM models. Compared to other meth- 471
ods such as GPT-4o, WalkVLM can generate more concise 472
and informative responses, thus providing a better experi- 473
ence for users. In the left case, whereas other models of- 474
fer highly detailed responses, WalkVLM simply provides a 475
concise prompt to the user, effectively highlighting the cru- 476
cial aspect. As in the right case, WalkVLM perceives the car 477
coming from the one o’clock direction and conveys the fo- 478
cus to the user, which other models have not accomplished. 479

Figure 8 shows a qualitative comparison of GPT-4o and 480
WalkVLM in terms of temporal redundancy. Our model 481
triggers VLM with lower temporal redundancy and can pro- 482
vide information to users in a more timely manner. Ap- 483
pendix C presents more qualitative results, including the 484
comparison with other VLMs on actual video streams. 485

5.4. Subjective Results 486

As illustrated in Table 4, we requested nine annotators to 487
perform a subjective evaluation of various VLM models 488
with respect to language conciseness and semantic similar- 489
ity to the GT. Participants are required to rank the results 490
individually, and we use the top-1 superiority ratio to eval- 491
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Ours

To navigate through the narrow street in the video, 

follow these steps:

1. Begin Walking on the Sidewalk: Start by walking 

along the sidewalk to your left side, which is lined 

with parked cars and shops.

2. Proceed Down the Street: Continue walking straight 

down the center of  the street as it stretches ahead.

3. Stay Aware of Surroundings: Be mindful of  any 

vehicles that may be moving or parked closely to you. 

Pay attention to pedestrians who might also be using 

the sidewalk.

4. Turn Left if Necessary: If  there are no obstructions 

or traffic, consider turning left at a junction where the 

street forks.

By following this guidance, you can safely walk through 

the street without obstructing the flow of  traffic or 

causing delays for other pedestrians. 

To walk through this street safely and unobstructed, 

follow these steps:

1. Stay on the Left Side: The right side of  the street is 

lined with parked vehicles, which could obstruct 

your path. Walking on the left side will provide a 

clearer path.

2. Watch for Obstacles: Keep an eye out for any 

obstacles like motorcycles, carts, or people that may 

be on the left side of  the street. Navigate around 

them carefully.

3. Proceed Straight Ahead: Continue walking straight 

towards the tall building in the background. This will 

keep you on a relatively clear path.

4. Be Aware of Moving Vehicles: Although the street 

is narrow, there may still be vehicles moving through. 

Stay alert and be prepared to step aside if  necessary.

5. Look for Pedestrian Walkways: If  there are any 

designated pedestrian paths or sidewalks, use them 

for added safety.

By following these steps, you should be able to navigate 

through the street without any major obstructions.

The given images show a narrow street with parked cars on 

both sides. The street appears to be a residential area with 

buildings on either side. There are no visible pedestrians or 

other vehicles in the image. Based on this information, the 

correct and unobstructed walking guidance would be to 

walk down the street in the direction shown in the images.

There is a vehicle at 1 o’clock direction. Be careful 

to avoid.

GPT-4o

Qwen

MiniCPM

Weather Condition: Sunny Area Type: Road

Danger Level: LowTraffic Flow Rating: Low

Summary: On a road, there are white and black cars passing at 1 o'clock 

direction, red-and-white barricades on the right, the road ahead is flat 

and wide, there are white buildings ahead, a colorful car parked at 11 

o'clock direction, a trash can ahead, a black car parked on the roadside 

at 10 o'clock direction, a black motorcycle parked on the roadside at 10 

o'clock direction, and pedestrians passing at 1 o'clock direction.

Alert: At 1 o‘clock direction, a car is passing by, be careful. 

Weather Condition: Sunny Area Type: Pedestrian Path

Danger Level: HighTraffic Flow Rating: High

Summary: It is sunny. I am walking on the sidewalk. There is a pedestrian in a brown coat walking straight 

ahead. Five steps away at eleven o'clock, there is an adult in a red short-sleeve shirt and black shorts with a 

backpack leading a child in a white shirt and black pants walking in front. There are trees planted on both 

sides of the road. The road is narrow and there is a large flow of people.

Alert: At three o‘clock direction, there are pedestrians passing by, and in front there are pedestrians 

passing by. Be careful to avoid. 

Ours

To provide correct and unobstructed walking guidance based on the input video, 

follow these steps: 

1. Observe the Pathway: The video shows a a paved pathway surrounded by trees. 

Ensure you stay within this path to avoid any obstacles or uneven terrain.

2. Follow Traffic Flow: Walk in the same direction as others. In the video, people 

are moving forward, so maintain your position either behind or beside them, 

depending on available space.

3. Maintain Distance: Keep a safe distance from other individuals to ensure 

personal space is respected and to prevent potential collisions.

4. Stay Alert: Be aware of  your surroundings. Look out for any changes in the 

path condition such as puddles, cracks, or debris that could cause tripping 

hazards.

5. Adapt to Environment: If  the path becomes crowded, adjust your pace 

accordingly. In the video, there appears to be a a moderate flow of  people; 

adapt your speed to match theirs.

6. Use Handrails if Available: If  there are hand rails along the path, use them for 

support, especially when navigating slopes or uneven sections.

Based on the provided images from the video, 

here are the walking guidance steps:

1. Continue Straight: The path ahead is clear 

and unobstructed. Continue walking straight 

along the concrete pathway.

2. Stay on the Path: Ensure you stay on the 

main concrete path. Do not veer off  to the 

sides as the terrain might be uneven or less 

stable.

3. Maintain a Safe Distance: Keep a safe 

distance from other walkers to avoid any 

potential collisions or disruptions.

4. Be Aware of Surroundings: While walking, 

stay aware of  your surroundings, especially if  

there are children or groups ahead.

5. Follow the Crowd: It appears that the path is 

popular and used by many people. Following 

the flow of  the crowd can help ensure you 

stay on the right track.

6. Enjoy the Scenery: The path is flanked by 

trees and greenery, making it a pleasant walk. 

Take time to enjoy the natural surroundings.

By adhering to these steps, you should have a 

safe and enjoyable walk on this path.

The video shows a group of  people walking down a path. Based on the video, here 

are some tips for safe and comfortable walking:

1. Stay on the path: Make sure to stay on the designated path to avoid any 

potential hazards or obstacles.

2. Keep a safe distance: Maintain a safe distance from other people on the path to 

avoid collisions or accidents.

3. Watch your step: Be mindful of  your footing and watch for any uneven 

surfaces or obstacles on the path.

4. Stay alert: Keep your eyes and ears open for any potential hazards or obstacles 

on the path.

5. Follow the rules: Follow any rules or guidelines.

There are pedestrians walking ahead. Please 

slow down to avoid collision.

GPT-4o

Qwen

MiniCPM

Annotation Annotation

Text in red is relevant objects, and Text with strikethrough is irrelevant or erroneous descriptions.

Figure 9. Visualization comparison of different VLM models. Compared to other models, WalkVLM is able to generate concise and
informative answers, providing users with a good experience in blind walking. Refer to Appendix C for more visualization comparisons.

uate the performance of the method, where a higher score492
indicates better performance. Compared with other meth-493
ods, WalkVLM has far surpassed other models in terms of494
conciseness, both in reminder and QA tasks. In the se-495
mantic similarity evaluation against the GT, WalkVLM per-496
forms marginally better than GPT-4o in the reminder task497
but slightly worse in the QA task. The suboptimal perfor-498
mance of WalkVLM in the semantic evaluation of QA tasks,499
can be attributed to the conciseness of its output, which500
means that a small amount of output information is difficult501
to cover all the semantics of the GT.502

5.5. Ablative Study503

The ablation study of WalkVLM is shown in Table 5 to504
verify the effectiveness of CoT-based hierarchical planning505
(CHP) and POLM prior. We conducted three sets of abla-506
tion experiments: (a) w/o CHP. Remove the CHP mecha-507
nism and generate reminder directly based on the input vi-508
sual information. (b) w/o Pos Prior. Remove the approx-509
imate position of significant obstacles in POLM. (c) w/o510
POLM Prior. Remove the input filtered target exact lo-511
cation and category. In these experiments, when the CHP512
mechanism was removed, the model’s degradation was sig-513
nificant, which may be due to the model’s inability to fully514

Configuration TF-IDF ROUGE-1 ROUGE-2 ROUGE-L
w/o CHP 0.094 0.073 0.007 0.066
w/o Pos Prior 0.151 0.189 0.062 0.171
w/o POLM Prior 0.152 0.178 0.056 0.164
Full 0.166 0.191 0.062 0.173

Table 5. Ablation study on reminder task. CHP stands for CoT-
based hierarchical planning, Pos Prior stands for the general area
where obstacles are located in POLM, and POLM Prior stands for
the pixel point where the filtered target is exactly located.

perceive the scene, resulting in the inconsistency between 515
the distribution of generated reminder and the GT distribu- 516
tion. While CHP, enables the model to conduct more de- 517
tailed analysis from static attributes and scene summaries, 518
thereby obtaining more concise results. For the case of 519
lacking POLM prior, the model’s ROUGE performance is 520
worse compared to lacking position prior, indicating that 521
the model relies more on the visual details. 522

6. Conclusion 523

To fulfill the mission of technology for good, this pa- 524
per presents WalkVLM, a vision-language model for blind 525
walking task, which employs chain of thought for hierarchi- 526
cal planning to generate concise but focused reminders, and 527
utilizes temporal-aware adaptive prediction to reduce the re- 528
dundancy of reminders in the time series. Additionally, we 529
have constructed a diverse, extensive, and unbiased walking 530
awareness dataset, aimed at providing a more robust data 531
foundation for this field. Comprehensive experiments show 532
that, compared to other VLM models, WalkVLM can gener- 533
ate more concise reminder and better temporal adaptability 534
when handling video streaming in blind walking task. 535

7. Limitations 536

This paper proposes a WAD dataset and systemati- 537
cally establishes the blind walking task based on the 538
vision-language model, thereby setting up an extensive 539
benchmark and offering valuable data support to this 540
field. Although the WAD dataset covers dozens of cities, 541
its generalization capability is still relatively limited in 542
practical applications, making the collection of additional 543
data an essential endeavor. Moreover, we devised the 544
WalkVLM to make the reminders concise and opportune, 545
but still leave considerable room in inference efficiency. 546

547
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